Syvecs LTD

V1.3

X4 Expander

This document is intended for use by a technical audience and describes a number of procedures that are potentially hazardous. Installations should be carried out by competent persons only.

Syvecs and the author accept no liability for any damage caused by the incorrect installation or configuration of the equipment.

Please Note that due to frequent firmware changes certain windows might not be the same as the manual illustrates. If so please contact the Syvecs Tech Team for Assistance.

Support@Syvecs.com

The Syvecs X4 Expander is a compact but very powerful expansion unit for enhancing the Input and Output compliment of a powertrain electronics installation.

The X4 is fitted with four Half Bridges drivers which are capable of driving Low, High or joined in pairs as a full bridge motor driver. Each of the four H-Bridge Outputs is equipped with a current monitoring circuit which can be assigned in strategies on Syvecs Engine Controllers or as Current Limiting functions in other applications.

Four MagnetoResitive circuits make reading the ABS sensors found on most new automotive applications easier by just needing to connect one side of the sensor to the X4 and the other side to Ground.

The four 0-5v Analog inputs are not capable of frequency detection but are useful for monitoring of switches, pressure transducer or positional sensors.

Able to withstand the toughest of conditions and high temperatures the X4 is useful for many applications whether it's for external Drive By Wire support, Electronic Wastegates, Fuel Pump Controller and more.

Two canbus interfaces are fitted on the X4 which are setup out of the box for Slave Control with a S7,S8,S12 Ecu or XCan Support for other Ecu's.

Syvecs is also able to use the hardware for custom projects so if you have a requirement for a dedicated task please email support@syvecs.com

Specification

Outputs

4 Half Bridge Outputs (Support: Full Bridge, Lowside or HighSide Drive)

15Amp Peak (100ms) 8Amp Continuous Drive

Current Monitoring on each pin

Inputs

4 Analogue or switch inputs (0-5V)

4 MagnetoResistive Wheel Speed Sensor Inputs

Interfaces

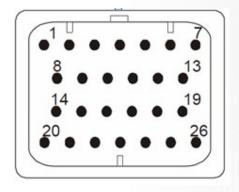
USB For Updates and Config

2 x CAN 2.0B interface for communication with other controllers or logging systems

1 x Kline Interface

Power Supply

6 to 26V input voltage range


Ignition Switch Logic with high current supply

Physical

Waterproof Sealed in Automotive Spec -40c to 125c

34 way Superseal 1.0

85mm x 70mm

Syvecs Description	X4 Pinout	Function	Notes
PWRGND	A1	Ground	
PWRGND	A2	Ground	
H-Bridge1	A3	H Bridge with Current Sense	
H-Bridge2	A4	H Bridge with Current Sense	
H-Bridge3	A5	H Bridge with Current Sense	
H-Bridge4	A6	H Bridge with Current Sense	9
12V HC	A7	12v Supply - High Current	
Kline/LinBus	A8	Kline/LinBus	
MagnetoResistive 1	A9	Connects to ABS +Wire	Other side of Sensor Gnd
MagnetoResistive 2	A10	Connects to ABS +Wire	Other side of Sensor Gnd
MagnetoResistive 3	A11	Connects to ABS +Wire	Other side of Sensor Gnd
MagnetoResistive 4	A12	Connects to ABS +Wire	Other side of Sensor Gnd
12V HC	A13	12v Supply - High Current	
Can0 H (1.33mb)	A14	Slave CanBus	1.33MB
Can0 L (1.33mb)	A15	Slave CanBus	1.33MB
12v IGSW	A16	12v - Ignition Switch	Wakes up Unit
Can1 H (500kb)	A17	XCan H	XCan Protocol
Can1 L (500kb)	A18	XCan L	XCan Protocol
12V HC	A19	12v Supply - High Current	
5v Out	A20	5v Output Supply	
AN1	A21	0-5v Analog Input	
AN2	A22	0-5v Analog Input	
AN3	A23	0-5v Analog Input	
AN4	A24	0-5v Analog Input	
PWRGND	A25	Ground	
PWRGND	A26	Ground	

Mating Connector – TE 2-1437285-3

Power Connection

The X4 has **four** power connection points, **three** of these are high current and can be connected to a fused battery power or switched power source. **One** of them is Logic Switch / Ignition Switch power and used to switch the power gate so that current is able to flow from the 3x High current 12v pins into the Device.

The three high current pins are **linked internally**, as are the power ground pins. If driving motors or solenoids which pull a lot of current then ensure the correct amount of pins are connected. Each pin on the X4 is able to sink around 14 amps of current continuously, so if driving multiple solenoids that pull 20+ amps total, ensure at **least** two high current 12v pins and two power ground pins are used.

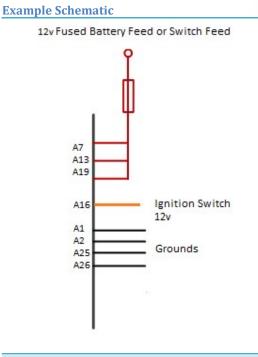


Figure 0-1 – Power and Ground Feeds

Pin Number	Function	Notes
A7	VBAT	Use a fused Switched feed.
A13	VBAT	Use a fused Switched feed.
A19	VBAT	Use a fused Switched feed.
A16	IGBAT	Ignition Switched 12v
A1	Power Ground	Ground for Power and Sensor Signal
A2	Power Ground	Ground for Power and Sensor Signal
A25	Power Ground	Ground for Power and Sensor Signal
A26	Power Ground	Ground for Power and Sensor Signal

CanBus Connections – Syvecs ECU Slave Link 1.33mb

S7

S7-I & S7Plus connect X4 CanOL (Pin15) to S7 Can2L (PinB2)

S7-I & S7Plus connect X4 Can0H (Pin14) to S7 Can2H (PinB3)

S8/GDi4

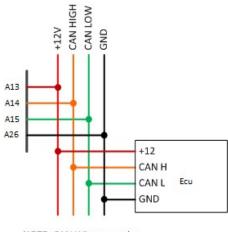
S8 connect X4 CanOL (Pin15) to S8 Can2L (Pin79)

S8 connect X4 CanOH (Pin14) to S8 Can2H (Pin80)

S12

S8 connect X4 CanOL (Pin15) to S8 Can2L (Pin18)

S8 connect X4 CanOH (Pin14) to S8 Can2H (Pin76)


ECU Pin Assignments – Syvecs ECU

The Syvecs range of ecus from S7 onwards can use the spare canbus available for communicating with the X4 expander over a slave protocol which runs at 1.33mb

To bring the Slave connection online you only need to assign a pin to the Slave of choice, do not need to setup anything in the DataStream section. If this is a S7 which has a slave1 already in use then use Slave2 Inputs and Output assignments. With the S8 and S12 you can use Slave 1.

After assigning and doing a Device – Program, The message system at the bottom right hand corner of Scal should state Master : Slave2 Online : SNXXX... If not check the canbus connections and ensure the canbus is terminated correctly.

Differential Control	1040 texnologia (1040) texnologia (1040)
Tersue Estruction And Limitation	Institute OF
Ouse Control	ergineEnable O
Automatic Tanamation Control	Testa da
	Isfart 25
Output Functions	10/w2
 Logging Functions 	10%a 25% antheai 21,5
> 🕜 Datastrearm	er/Peakids 113
Fuel Catsumption	athrg 123 artist 0.82
Engine Use Restrictions	#40V 0-03
Project our resolutions	#877 633
	1007 0.0 1007 0.0
▶ ⑦ Sentors	#55V 4.5 #56V 0.5
Engine Configuration	#07Y 4.5
Configurable Purpose Naps	arbly 4.9
V (2) Configuration	400V 0.01 402V 0.02
Pin Assignments - ((Pin Use)	and the second se
Hark Cylinders (With Na Assigned Injection As Shut Down	er2Y 0.8
	#177 6.5 #167 6.5
	#197 5.9
SENT Sensor Inputs	with 45
Q Car Ceding	en/lap en/las
tO Pin Saving	ero/ligit
Cratk and Cam Input Noise Filter	sensoritaniquand O
Direct Injection Mode	sensatismegi.gis O
TTL lariton (Adust Drive Voltage	Menoy gofa 2
	Rendy using 2 Rendy Long (J GAN RDC
	Marcada 5 493.3
Slave 1 Link Options	ECU of area : 2402/0212055138 ECU fore now : 2402/0212085460
	ECJ 0me n/us - 2462/321008/9480 Faut - 152
Maamum Throttle Poston For Learning Apply/Reset From Calibration Software	Log area 2281527E bytes
Calculate Californition Checksum	KS22 detection : SYVECS
Caluter Calendon Teodom	MASTER SLAVES REQUIRED MASTER SLAVES REQUIRED
	MASTER I SLAVEZ I 0
Output Teiting	MASTER I SLAVEL 1950106

NOTE: CAN Wires must be kept as a twisted pair.

Outputs

H Bridge outputs 1 -4 are assigned under Slave*Out 1-4. If wanting to control a Motor in Full bridge then it must be wired in equal pairs 1-2 / 3-4 / 5-6 etc then assign the first number of the pair. Example Motor connected to Hbridge 1 and 2, assign the strategy function to Slave* Out1 as below. Each H-Bridge output can handle **15amps peak** and **8amp continuous**.

Low side and High side drive can just be assigned to the corresponding pin as required in pin assignments

B) Outputs : Auto Trans Line Pressure Control	NOT CONNECTED	
B) Outputs : Auto Trans Lockup Clutch Pressure Control	NOT CONNECTED	
B) Outputs : Auto Trans Low Ratio Control	NOT CONNECTED	
B) Outputs : Auto Trans Manual Mode Indicator	NOT CONNECTED	
B) Outputs : Auto Trans Shift Control 1	NOT CONNECTED	
B) Outputs : Auto Trans Shift Control 2	NOT CONNECTED	
B) Outputs : Auto Trans Shift Control 3	NOT CONNECTED	
B) Outputs : Auto Trans Shift Control 4	NOT CONNECTED	
B) Outputs : Auto Trans Shift Control 5	NOT CONNECTED	
B) Outputs : Auto Trans Shift Control 6	NOT CONNECTED	
B) Outputs : Auto Trans Shift Control 7	NOT CONNECTED	
B) Outputs : Auto Trans Shift Control 8	NOT CONNECTED	
B) Outputs : Basic PWM 01 [Spare]	SLAVE1 OUT #01 : A2	
B) Outputs : Basic PWM 02 [Spare]	NOT CONNECTED	
B) Outputs : Brake Light	NOT CONNECTED	
B) Outputs : Canister Purge	NOT CONNECTED	
B) Outputs : Change Light (Stage 1)	NOT CONNECTED	
B) Outputs : Change Light (Stage 2)	NOT CONNECTED	
B) Outputs : Change Light (Stage 3)	NOT CONNECTED	
B) Outputs : Change Light (Stage 4)	NOT CONNECTED	
B) Outputs : Closed-Loop PWM 01 [DI Pump]	NOT CONNECTED	
B) Outputs : Clutch Control (Closed Loop Position)	NOT CONNECTED	
B) Outputs : Clutch Control (Open Loop On/Off)	NOT CONNECTED	
B) Outputs : Differential Pressure Control (Centre)	NOT CONNECTED	
B) Outputs : Differential Pressure Control (Front)	NOT CONNECTED	

Calibrators need to set the Output type in the strategy they are planning to use. Example: user has assigned Slave out1 to Basic PWM strategy and requires the pin to be run in Full bridge for Motor control where 50% is zero drive and 0% or 100% is maximum drive.

The Output type can be set in the strategy they are planning to use:

Low-Side = Output drives to Ground Half Bridge = Output Drives to 12v Full bridge = Motor Drive

Example: Using basic PWM1 for Fully bridge Motor Control.. Output Functions – Basic PWM 1 – Output Type

Set Output Type as Full Bridge

The Minimum Frequency a H-Bridge output can be driven is 20hz

Torque Estimation And Limitation	
Cruise Control	
Automatic Transmission Control	
Voltput Functions	
Air Con Control	
Alternator Control	
Basic PWM 01 [Spare] [Spare]	
Output Drive Type	
PWM Frequency	FULL-BRIDGE
Output Duty X Axis [LSUFeedback_U03] Dimension	500 0070 0F
Output Duty X Axis [LSUFeedback_U03] Breakpoints	FULL-BRIDGE
Output Duty Y Axis [vbat] Dimension	
Output Duty Y Axis [vbat] Breakpoints	
Output Duty - f(LSUFeedback_U03,vbat)	o
Basic PWM 02 (Spare]	a l
Closed-Loop PWM 01 [DI Pump] [DIPump]	g HALF-BRIDGE -
Brake Light	
Change Light	đđ
Engine Speed Controlled Outputs	0
Exhaust Gas Recirculation	
Fan 1 (ON/OFF) [Spare]	
Fan 2 (ON/OFF) [Spare] [Spare]	LOW-SIDE
Fan 3 (PWM) [CoolingFan] [NONE]	

Current Sense Monitoring

H Bridge outputs 1 -4 have a current sensor fitted on each device. These can be monitored under Slave*AN 9-12 assignments in Scal. 2.5v is the rest voltage for OmA

HBridge1 = Slave* AN9 HBridge2 = Slave* AN10 HBridge3 = Slave* AN11 HBridge4 = Slave* AN12

Scale is -18.3333A at 0V and 18.3333A at 5V

ADC Inputs AN1-4

Four Analog Inputs are available on the X4. These are just 0-5v Analog inputs and cannot support frequency waveforms. They are designed for sensors like pressure transducers or position sensors.

AN Inputs 1 -4 are assigned under Slave*AN 1-4.

A) Inputs : Cal Up Switch	NOT CONNECTED	
A) Inputs : Calibration Override Switch A	NOT CONNECTED	
A) Inputs : Calibration Override Switch B	NOT CONNECTED	
A) Inputs : Calibration Switch	NOT CONNECTED	
A) Inputs : Cam (Exhaust 1 Variable Valve Timing)	NOT CONNECTED	
A) Inputs : Cam (Exhaust 2 Variable Valve Timing)	NOT CONNECTED	
A) Inputs : Cam (Inlet 1 Variable Valve Timing)	NOT CONNECTED	
A) Inputs : Cam (Inlet 2 Variable Valve Timing)	NOT CONNECTED	
A) Inputs : Cam (Phase) A	AN 05 (AU) : C14	
A) Inputs : Cam (Phase) B	NOT CONNECTED	
A) Inputs : Clutch Depressed Switch	NOT CONNECTED	
A) Inputs : Clutch Paddle Position A	NOT CONNECTED	
A) Inputs : Clutch Paddle Position B	NOT CONNECTED	
A) Inputs : Clutch Postion	NOT CONNECTED	
A) Inputs : Clutch Pressure	NOT CONNECTED	
A) Inputs : Crank Case Pressure 1	SLAVE2 AN #01:	
A) Inputs : Crank Case Pressure 2	NOT CONNECTED	
1) I palo r Crank Case Pressare D	HOT CONNECTED	
A) Inputs : Crank Case Pressure 4	NOT CONNECTED	
A) Inputs : Crank Position A	AN 01 (AB): C10	
A) Inputs : Crank Position B	NOT CONNECTED	
A) Inputs : Cruise Control Nudge Down Switch	NOT CONNECTED	
A) Inputs : Cruise Control Nudge Up Switch	NOT CONNECTED	
A) Inputs : Cruise Control Switch	NOT CONNECTED	
137 1 0 0 11 /5 11 0 11 0	NOT CONVECTED	

The Input Type for the sensor it is assigned to, must be set to 5v otherwise the message system in the bottom right of Scal will bring up a Slave error and the engine won't be allowed to start

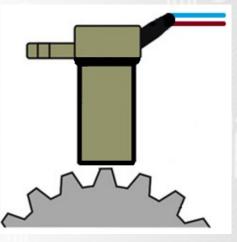
ALS Select Switch	
Ambient Air Temperature	
Automatic Transmission Oil Temperature	
Automatic Transmission Pressure	
Automatic Transmission Speed	
Barometric Absolute Pressure	
Barometric Pressure Sensor	
Input Configuration	Configuration
Default Voltage High	5V
Default Voltage Low	
Default: Sensor Reading	UEGO Lambda —
Filter Constant	
Falure Rate	K-Type Thermocouple —
Recovery Rate	kerype memocoupie
Linearisation - f(bapV)	ត្ត
Freeze Value When tpsMax>	5v
Freeze Value When vehicleSpeed>	5V
Freeze Hold Time	Ŭ
► Key-On	Thermistor —
Battery Voltage	
Beacon Input	
Brake Pressure	5V Bipolar —
Calibration Switch	
Carrishaft Position	
Outch	

MagnetoResistive Inputs - HALL 1-4

The X4 expander supports four magneto-resistive wheels speed sensors which most new factory cars use. These can be connected directly to the Syvecs X4 controller via Pins 9 to 12. The positive side of the sensor connects to the X4 hall input, the negative side get connected to power ground on the X4.

This means users can remove the OEM ABS Computer from the car if wanted and read the sensors direct . Connect one side of the sensor to MagnetoRes* input and the other side to ground.

MagnetoResitive Inputs 1 -4 are assigned under Slave*AN 5-8.


MagnetoRes1 = Slave* AN5 MagnetoRes2 = Slave* AN6 MagnetoRes3 = Slave* AN7 MagnetoRes4 = Slave* AN8

ing appear our formation compensation formation	No i competes
A) Inputs : U18 [Differential Temperature (Rear)]	NOT CONNECTED
A) Inputs : U19 [Differential Pressure (Front)]	NOT CONNECTED
A) Inputs : U20 [Differential Pressure (Centre)]	NOT CONNECTED
A) Inputs : U21 [Differential Pressure (Rear)]	NOT CONNECTED
A) Inputs : U22 [Turbine Inlet Temperature]	NOT CONNECTED
A) Inputs : U23 [Turbine Exit Temperature]	NOT CONNECTED
A) Inputs : U24 [ThermoStat Position]	NOT CONNECTED
A) Inputs : U25 [Turbine Exit Pressure]	NOT CONNECTED
A) Inputs : Vehicle Speed (Front Left Wheel A)	SLAVE2 AN #05 :
A) Inputs : Vehicle Speed (Front Left Wheel B)	NOT CONNECTED
A) Inputs : Vehicle Speed (Front Right Wheel A)	SLAVE2 AN #06 :
A) Inputs : Vehicle Speed (Front Right Wheel B)	NOT CONNECTED
A) Inputs : Vehicle Speed (Radar)	NOT CONNECTED
A) Inputs : Vehicle Speed (Rear Left Wheel A)	SLAVE2 AN #07 :
A) Inputs : Vehicle Speed (Rear Left Wheel B)	NOT CONNECTED
A) Inputs : Vehicle Speed (Rear Right Wheel A)	SLAVE2 AN #08 :
A) Inputs : Vehicle Speed (Rear Right Wheel B)	NOT CONNECTED
A) Inputs : Vertical G	NOT CONNECTED
A) Inputs : Wastegate Capsule Pressure 1	NOT CONNECTED
A) Inputs : Wastegate Capsule Pressure 2	NOT CONNECTED
A) Inputs : Wastegate Position 1	NOT CONNECTED
A) Inputs : Wastegate Position 2	NOT CONNECTED
A) Inputs : Weight On Wheels Switch	NOT CONNECTED

Under Sensors - Vehicle Speed ... Calibrators will then need to set the Measurement area up as below

Input Configuration – 5v Input Filters – Off Low Threshold Voltage – 1.25 High Threshold Voltage – 3.75 Tooth Timeout – 0.25 Number of teeth – Number of teeth on the ABS ring

Supercharger Bypass Valve Position		
Tacho Input		
Throttle Position		
Throttle Jacker Position		
Traction Control Switch		
Traction Control Tuning Switches		
Turbo Speed		
Vehicle Speed		
Measurement		
Input Configurations - f(Input)		
Input Filters - f(Input)		
Low Threshold Voltages - f(Input)		
High Threshold Voltages - f(Input)		
Tooth Timeouts - f(Input)		
Numbers of Teeth - f(Input)		
Numbers of Teeth Per Reading - f(Input)		
Dry Tyre Circumferences - f(Input)		
Intermediate Tyre Circumferences - f(Input)		
Wet Tyre Circumferences - f(Input)		
Spike Detection		
Too Fast Detection		
Too Slow Detection		
Lateral G Based Conditioning		
Vehicle Speed And Driven Speed		
Wheel Spin Calculation		

XCan – Custom Projects / Other Engine Management Systems

The XCan protocol which is available on Can1 of the X4 is designed for other engine management systems or older Syvecs ecus which don't have a spare canbus.

The DBC for this Can Protocol can be found at the below link to help speed up development

www.syvecs.com/downloads/XCan_DBC.dbc

The X-CAN Protocol runs default at 500kb, Custom builds can be done to change this speed.

XCan Protocol - Outputs

H-Bridge Output Setup

Frame 0x770 is used to configure the output setup (Output Type & Output Frequency)

Output Setup frames can be sent to expander just once at boot up or continuously but the protocol only grabs the setup once when it recieves a frame. If can messages disappear (0x770 and 0x778) for longer than 1000ms then a reset is applied to the Output setup. This can be used for programming different types and frequencies.

Each Output channel is configured by 2 bytes in MSB data format

The top 2 bits set the Output type - 1100:0000 | 0000:0000 The 14 other bits set the Output Frequency as a raw decimal in HZ - 0011:1111 | 1111:1111

Output Type is set as below -OFF(Output Off) - 0x00 = 0000:0000 | 0000:0000 LS (Low Side Drive) - 0x40 = 0100:0000 | 0000:0000 HB (High Side Drive) - 0x80 = 1000:0000 | 0000:0000 FB (Motor Control) - 0xC0 = 1100:0000 | 0000:0000

Example - 0x85DC = 1000:0101 | 1101:1100 = High Side Output at 1500hz

When controlling in FB Mode the opposite output channel needs to be set to OFF and 0 Frequency

Example - Byte0 | 0xC5DC and B1 | 0x0000 = Full Bridge Control on HBR1 and 2 at 1500hz

Ganged Mode Control - Allows 2 outputs to be driven off same duty. Useful for when needing to control very high current devices as a single pin on the superseal connector can only handle 15 amps.

If Out1 = FB, Out2 = OFF == BOTH Out1 and Out2 will be control in Full bridge motor and driven from the Duty on Out 1 frame If Out1 = FB, Out2 = LS == BOTH Out1 and Out2 will be LS Ganged and driven from the Duty on Out 1 frame If Out1 = FB, Out2 = HS == BOTH Out1 and Out2 will be HS Ganged and driven from the Duty on Out 1 frame

H Bridge Outputs (HBR1-4) - Support OFF, LS, HS and FB, During FB Mode HBR1 and HBR2 would be linked to drive a Motor forward and back

Frame 0x770 - HBR1-4 ------Byte B0 B1 B2 B3 B4 B5 B6 B7 0x770 - HBR1 : HBR1 : HBR2 : HBR2 : HBR3 : HBR3 : HBR4 : HBR4 : _____

Frame 0x778 is used to configure the output duty cycle set on each output, these needs to be transmitted at 50ms per frame rate or faster

This again is done via 2 Bytes and the duty is calculated as a multiple of 81.92

If you wanted to drive the output at 22% Duty then would take 81.92 * 22 = 1802 (Decimal) convert to Hex 0x070A. Byte 0 = 0x07 Byte 1 = 0x0A

0x0000 = 0% Duty 0x2000 = 100% Duty

H Bridge Outputs(HBR1-4) - Duty Setup

Frame 0x778 - HBR1-4 -----Byte B0 B1 B2 B3 B4 B5 B6 Dutput Duty Setup Byte B0 B1 B2 B3 B4 B5 B6 B7

0x778 - HBR1 : HBR1 : HBR2 : HBR2 : HBR3 : HBR3 : HBR4 : HBR4 :

XCan Protocol - Inputs

Engineering Value 0.078125 to V

Frame 0x760 is used to configure the input setup (Input Type & Thresholds)

Input Setup frames can be sent to Expander just once at boot or continuously but the code only grabs the setup once when it recieves a frame. If can messages disappear for longer than 1000ms then a reset is applied to the Input setup. This can be used for programming different input setups and thresholds for frequency inputs.

The MagnetoResistive Inputs and Current Measurement Inputs don't need to be setup, they will be transmitted when the X4 has received a 0x760 Frame.

The X4 expander has 4 x AV Inputs (AN01-4), 4 x Freq (MagnetoResistive) Inputs and 4 x Current measurement values

- AV Input which mean they can only read a ADC Voltage 0-5v - DO NOT SUPPORT FREQ or Pull-Up

Each Input channel is configured by 2 bytes in MSB data format

Bit15 - (0x8000)- 1000:0000 | 0000:0000 = Sets the Input Pull-Up Option to be enabled . This enables a 5v 3k pull up on the input

Bit14 - (0x4000)- 0100:0000 | 0000:0000 = Sets the Input Type - If this bit is set then the input is setup for Frequency detection, if its NOT set then the input is setup for ADC monitoring

Bit13 - (0x2000)- 0010:0000 | 0000:0000 = Sets the bipolar flag but only if the Input is not in Frequency Mode.. If in Frequency Mode Bit5 is part of the High Thresold setup

Bit13 to Bit7 - (0x3F80)- 0011:1111 | 1000:0000 = These 7 bits set the High threshold for the Inputs when in Frequency mode | Engineering Value 0.078125 to V Bit6 to Bit0 - (0x007F)- 0000:0000 | 0111:1111 = These 7 bits set the Low threshold for the Inputs when in Frequency mode |

Example - (0x578F)- 0101:0111 | 1000:1111 = Frequency Mode Enabled with Low Threshold at 1.2v and High Threshold at 3.7v

Frame 0x760 - AN1-4

 Byte
 B0
 B1
 B2
 B3
 B4
 B5
 B6
 B7

 0x760 - AN1 : AN1 : AN2 : AN2 : AN3 : AN3 : AN4 : AN4 :
 AN4 : AN4 :
 AN4 :
 AN4 :
 AN4 :

AN1-4 Input Values

0x780 Frame transmits the readings on the Analog inputs.

Each Input reading is represented by 2 bytes in MSB data format. The 2 bytes represent the ADC Reading on the Input.

The Engineering value is 0.000076 to V. Example Hex 0x4E80 = 1.527v

Frame 0x780 - AN1-4

Byte	B0	B1	B2	B3	B4	B5	B6	Β7
0x780 ·	- AS1	: AS1	: AS2 :	AS2 :	AS3 :	AS3 :	AS4 :	AS4 :

HBR1-4 Current Values

0x200 Frame transmits the current readings on HBR1 -4

Each Input reading is represented by 2 bytes in MSB data format. The 2 bytes represent the ADC Reading on the Input.

The Engineering value is 0.001 to A.

Frame 0x200 – HBR1-4 Current

Byte B0 B1 B2 B3 B4 B5 B6 B7

Ox780 - HBR1 : HBR1 : HBR2 : HBR2 : HBR3 : HBR3 : HBR4 : HBR4 :