Syvecs LTD

$\vee 1.1$

100Hz GPS IMU Module

This document is intended for use by a technical audience and describes a number of procedures that are potentially hazardous. Installations should be carried out by competent persons only.

Syvecs and the author accept no liability for any damage caused by the incorrect installation or configuration of the equipment.

Please Note that due to frequent firmware changes certain windows might not be the same as the manual illustrates. If so please contact the Syvecs Tech Team for Assistance.

Support@Syvecs.com

The Syvecs 100hz GPS Module is designed to provide even more control to our engine control units with accurate global positioning, acceleration forces for 6 axis and GPS Speed. Fast positioning lock with hot restarts due to internal battery storing last positioning data.

The following parameters are available from our 100Hz GPS Module

GPS Lateral Position GPS Longitude Position GPS Speed GPS Course GPS Altitude GPS Time and Date Number of Locked Satellites GPS Mode Letter GPS Fix Quality Lateral G Force Longitudinal G Force Vertical G Force Roll Pitch Yaw

Packaged in a lightweight CNC billet aluminium case with a waterproof 18way JAE Connector. Mating Socket - JAE - MX23A18SF1

Wiring

Pin Number	Pin Function						
3 or 4	Ground						
5	CAN1 LOW - 500Kb						
6	CAN0 LOW - 1mb						
12	12V Supply						
14	CAN1 Hi - 500kb						
15	CAN0 HI - 1mb						

S6Plus with PNP Kits connect GPS Can1 to S6Plus Can1 (C8/C9) - Generic S6+ ECU Speak to Support@Syvecs.com

S7Plus connect GPS Can0 to S7Plus Can2 (B2/B3) - if X10 Expander is wired to Can2 then Wire to Can1 on S7 like S6Plus above

S8 & S12 connect GPS Can0 to Either ECU Can1 or Can2

No Termination Resistor is set on the GPS Module so the GPS needs to be wired as a Node on the Canbus

CAN Output Description - All in Big Endian Format apart from 0x679h &0x690h

Can0 - 1MB Speed

ID 679h & 690h - GPS Position (LSB) - Motec M1 (Base ID 0x690h

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
of arc as a	de in ten-thou signed 32-b of the equator	it value. Pos	itive values	arc as a sigr	de in ten-thou ned 32-bit val Greenwich Me	ue. Positive v	alues are

ID 680h - GPS Position

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
of arc as a	de in ten-thou signed 32-b of the equator	it value. Pos	sitive values	arc as a sigr	de in ten-thou ned 32-bit vali Greenwich Me	ue. Positive v	alues are

ID 681h - GPS Course, Speed and Altitude

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Course in hundredths unsigned 16-bit value due North	of a degree as an A value of 0 indicates		tres per second as it value.	Altitude in metres as Negative values indic mean sea level	a signed 16-bit value. ate a position below

ID 682h - GPS Time and Date

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
Day of month as an unsigned 8-bit value		Year of century as an unsigned 8-bit value	Hour of day as an unsigned 8-bit value.	Minute of hour as an unsigned 8-bit value.	Second of minute as an unsigned 8-bit value.	Thousandths an unsigned 1	

ID 683h - Accelerometer

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
of a G as a signed	resent acceleration turning to the			Vertical accelerati of a G as a signer Positive values re acceleration, nega	present upwards		
			ID 684h - Gyr	oscope			
Dute 1	Duto 2	Duto 2	Puto 4	Duto 5	Buto 6	Duto 7	Buto 0

Byter	Byte 2	Byle 5	Byle 4	Byle J	Byte o	Byte /	Byteo
Roll in tenths of a as a signed 16-bit values indicate roll negative to the left	integer. Positive toward the right,	Pitch in tenths of a as a signed 16-bit i values indicate upw downward.		as a signed 16-bit	integer. Positive w to the right,		

ID 685h - GPS Status

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	
Horizonta precision of a metre	in tenths	Fix quality indicator (0=fix unavailable, 1=valid fix in SPS mode, 2=valid fix in differential GPS mode)	Number of satellites in view	GPS mode letter (N=data not valid A=autonomous mode, D=differential mode, E=estimated mode)	GPS status letter (A=data valid, V=receiver warning)	

Can1 - 500kb Speed

ID F0h - GPS Position

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
of arc as a	le in ten-thou signed 32-bi f the equator	it value. Pos	itive values	arc as a sigr	de in ten-thou ned 32-bit valı Greenwich Me	ue. Positive v	alues are

ID F1h - GPS Course, Speed and Altitude

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Course in hundredths unsigned 16-bit value due North	of a degree as an A value of 0 indicates	Speed in centime an unsigned 16-b	tres per second as it value.	Altitude in metres as a signed 16-bit value Negative values indicate a position below mean sea level	

ID F2h - Accelerometer

Byte 1	Byte 2	Byte 3 Byte 4		Byte 5 Byte 6		Byte 7	Byte 8
of a G as a signed	resent acceleration turning to the the right (as when	of a G as a signed			d 16-bit value. present upwards		

ID F3h - Gyroscope

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
Roll in tenths of a as a signed 16-bit values indicate ro negative to the left	Il toward the right,	as a signed 16-bit i		Yaw in tenths of a as a signed 16-bit values indicate yay negative to the left	w to the right,		

ID F4h - GPS Status

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Horizontal precision i of a metre	n tenths	Fix quality indicator (0=fix unavailable, 1=valid fix in SPS mode, 2=valid fix in differential GPS mode)	Number of satellites in view	GPS mode letter (N=data not valid A=autonomous mode, D=differential mode, E=estimated mode)	GPS status letter (A=data valid, V=receiver warning)

Syvecs Calibration Setup

<u>57, S8 & S12</u>

The Syvecs 100hz GPS module can be connected to Can1 or Can2 on the S8/S12. With the S7Plus its best to use Can2..If CAN2 is used for an expander then see the S7-I settings below and connect CAN1 of the GPS to CAN1 of the S7Plus To enable in Scal users need to select the GPS- AG50 as shown below in Datastream as well as the Recieve Canbus its wired to. A device - program is needed after this selection to activate

After enabling the monitoring items below will become available

	v	v	
gpsLat			gpsStatus
gpsLong			gpsSatInfo
gpsSpeed			longG
gpsCourse			latg
gpsAltitude			roll
gpsHrzDil			pitch
gpsFixQual			vertG
gpsNumSats			yaw
gpsMode			

S6-I/ S6Plus/ S7-I

The Syvecs GPS 100hz Data is picked up automatically on the S6Plus & S6/S7-I with Firmware 1.82+ after wiring onto the Can1 (C8 & C9) which is the 500kb Canbus with a Plug in Kit. To pickup the Accelerometer info from the Gps module users will need to enable the Accel Rx and Gyro Rx under I/O Configuration and make sure none of the Acceleration sensors are defined in the Pin Assignments.

After enabling the monitoring items below will become available

gpsLat gpsLong	longG latg
gpsSpeed	roll
gpsCourse	pitch
gpsAltitude	vertG
	yaw

IMPORTANT: Do not bend the antenna Cables more than a 5cm radius or secure tightly with Cable ties!

The GPS Module needs to be mounted as shown below for the 6 axis of the accelerometer to report correctly.

In applications where heavy vibrations are present due to solid engine mounts etc, it is advised to mount the GPS using some rubber washers to absorb some of the vibrations.

After mounting correctly you need to reset the sensor corrections in Scal for the accelerometers. This is done by clicking Device - Sensor Corrections

Then highlight the LatG/Long/VertG/Yaw/Pitch/Roll and select Reset, followed by Set

The Long G / Lat G should all read 0 now when the car is level

Sensor Group Dialog				
latG/longG/vertG/yaw/pitch/roll				
(fl/fr/rl/rr)Damper				
wgp1/wgp2				
swa				
sbv				
bpr/bpf				
reference lap				
re-initialise logging				
<u>S</u> et <u>R</u> eset <u>E</u> xit				

Motec Calibration Setup

M1 Series

The Syvecs 100hz GPS CANO can be connected to Can1, Can2 or Can3 on the M1 Series of Ecu's.

M1Tune users need to head to the All Calibrate Section, select GPS

Set the Can Interface Used and Base ID at 0x690

The Gyro/IMU Information needs to come via the Bosch MM5 protocol. Select Bosch in All Calibrate and set the CAD ID Messages as below

GPS Technical Specification

- Supports global GPS, Beidou, Galileo, GLONASS
- Supports regional QZSS, SBAS
- 16 million time-frequency hypothesis testing

 -148dBm cold start sensitivity 	•	Multipath detection and suppression
 -165dBm tracking sensitivity 		Jamming detection and mitigation
 29 second cold start TTFF 		AGPS Support
• 3.5 second TTFF with AGPS		Contains LNA, SAW Filter, TCXO, RTC Xtal
 1 second hot start 		Works with active and passive antenna
• 2.0m CEP accuracy		On board active antenna short protection
		On board active antenna detection

IMU Technical Specification

Parameter	Testconditions	Min.	Typ. ⁽¹⁾	Max.	Unit
			±4		gauss
Linear acceleration					
measurementrange			.045		
Angular rate			±245		
measurementrange					dps
Linear acceleration sensitivity	Linear acceleration FS = $\pm 4 g$		0.122		
	Magnetic FS = ±4 gauss		0.14		
Magneticsensitivity					mgauss/ LSB
	Angular rate FS = $\pm 245 dps$		8.75		mdnc/
Angular rate sensitivity					mdps/ LSB
Linear acceleration typical zero-g level offset accuracy ⁽²⁾	FS = ±4 g		±90		mg
Zero-gauss level (3)	FS = ±4 gauss		±1		gauss
Angularrate	FS = ±2000 dps		±30		dps
typical zero-rate level (4)	F3 - ±2000 (003		130		<u>AKS</u>
Magnetic disturbance field	Zero-gauss offset starts to degrade			50	gauss
Operating temperature range		-40		+85	°C